Monday, February 2, 2026

Software Portfolio Playbook: How Industrial Companies Can Turn Digital Ambition into Scalable Businesses

For more than a decade, industrial companies have pursued the same ambition: to become serious software players. Some have made real progress. Many have not. And the pattern is now unmistakable: software outcomes are not primarily determined by technology choices. They are determined by portfolio governance—how decisions are made, how resources move, and where accountability sits.

 

The core mistake is treating software as a collection of initiatives. The companies that win treat software as a portfolio—a set of fundamentally different businesses, each requiring different operating models, metrics, and leadership attention. In times of technological disruption, this becomes non-negotiable. Because disruption does not replace the old business overnight; it forces enterprises to run multiple business logics simultaneously.


Why a portfolio playbook is now essential

The most useful starting point is the concept of technology lifecycle zones—popularized through several management frameworks (including BCG and Geoffrey Moore’s “Zone to Win”). The specifics differ, but the management implication is consistent: leaders must actively govern four distinct zones in parallel, each with its own mandate and success measures .

In practice, these zones typically include some version of:

  • Protect the core (where cash is generated)

  • Manage the base business (where efficiency and resilience matter)

  • Fuel growth to scale (where new software engines are built)

  • Incubate future options (where learning and experimentation dominate)

This is not a semantic exercise. The purpose is to enable what industrial organizations often struggle to do: prioritize go-to-market resources and engineering capacity across competing demands .

Without an explicit portfolio view, resource allocation becomes path-dependent and political. With it, trade-offs become visible and executable.

The CEO’s job: make the big bet and arbitrate across zones

A credible portfolio playbook is ultimately a CEO tool. The CEO must place the big bet on the next growth engine—what “fuel growth to scale” means in that enterprise—and continually arbitrate between the zones as evidence evolves .

This arbitration cannot be delegated to the technology function alone. The center of gravity is not architectural. It is commercial. Software scale requires decisions about:

  • where to invest and where to stop

  • which businesses merit priority access to distribution

  • which initiatives are strategic, versus merely interesting

  • how much risk the enterprise is willing to carry

The strongest operators institutionalize this discipline by having the CEO and CFO set funding envelopes annually across the zones and adjust them through a lightweight corporate system—rather than trying to “align” continuously through discussions that lack decision rights. 

Portfolio management rationale: turning strategy into execution

Portfolio management exists for one reason: to connect strategy to capital and accountability.
Every material investment is explicitly linked to a strategic initiative. This eliminates the common pattern of “digital projects” that are directionally plausible but strategically unowned.

A strong portfolio system delivers three outcomes :

  1. Align strategy and investments

  2. Convert strategic objectives into execution
    Strategy becomes measurable actions. Leaders gain mechanisms to challenge, re-prioritize, and re-allocate—without drama.

  3. Create transparency and discipline
    Category leaders are held accountable, and the portfolio view becomes visible across the organization, reducing the ability to hide behind narratives.


This requires managing across three horizons: a multi-year strategic view, an annual resource allocation cycle, and quarterly reviews . The sequencing matters. Multi-year direction without annual resource allocation becomes aspiration. Annual allocation without quarterly learning becomes rigidity.

What separates mature portfolio management from periodic planning is fact-based discipline. Funding decisions are tied to capability needs, competitor moves, and risk—not to organizational persuasion.

Decision rights: the missing operating system

Most portfolio systems fail because they are treated as a governance overlay. In reality, portfolio management is a decision system. Without explicit decision rights, it becomes performance theater.

A scalable portfolio model establishes three clear roles:

1) Corporate Portfolio Office

This is not a reporting team. It is an empowered function that can:

  • move resources between categories

  • apply consistent planning processes

  • enforce transparency across business units

The office is the institutional memory of the portfolio and prevents the common industrial pattern of “starting over” every cycle.

2) Executive Committee / CFO

This level must:

  • arbitrate major reallocations

  • set the funding envelopes

  • ensure adherence to strategy

In practice, the CFO is often the pivotal actor, because portfolio discipline ultimately requires willingness to stop funding initiatives that have political support but weak evidence.

3) Category leaders

These leaders carry P&L responsibility and must deliver results within the allocation. They own the outcomes—not the rhetoric.

Critically, decision rights must operate at three levels :

  • Corporate level: align to strategy, balance risk/return, ensure coherence

  • Category level: own performance, KPIs, and category health

  • Business case level: validate assumptions, challenge resource use, monitor delivery

This multi-level structure matters because industrial software businesses often fail not at the strategy level, but at the point where execution assumptions—pricing, sales productivity, adoption dynamics—turn out to be wrong and no governance mechanism exists to correct course.

The anchor tool: a proprietary 2x2 matrix

Industrial groups often drown in complexity: dozens of products, overlapping roadmaps, and competing internal narratives. The portfolio needs an anchor.

The most effective tool is a proprietary 2x2 matrix based on market attractiveness versus relative strength, institutionalized as the backbone of investment decisions .

This matrix does not create insight by itself. It creates forcing function clarity:

  • Where should we invest aggressively?

  • Where should we harvest?

  • Where should we fix underlying capabilities?

  • Where should we exit?

The key is to make the matrix proprietary—not because the idea is novel, but because each industrial group must define “attractiveness” and “strength” in a way that reflects its economic realities: installed base leverage, channel access, data advantage, ecosystem power, and regulatory constraints.

Stop the “portfolio vs. non-portfolio” split

A surprisingly common failure mode is treating portfolio discipline as optional—applied to “strategic initiatives,” while other R&D runs independently.

The playbook is explicit: no split between “portfolio-relevant” and “non-portfolio” R&D. Everything must run through the same governance lens .

This isn’t control for control’s sake. It prevents the quiet accumulation of unowned products, orphaned prototypes, and “pet projects” that create complexity without compounding advantage.

Speed becomes structural: Agile, DevOps, and enabling architecture

Portfolio governance is not enough. Execution speed must be engineered into the operating system.

The best-practice baseline includes embedding Agile and DevOps as default delivery models, and enabling speed through microservices, cloud, low-code platforms, and AI where appropriate .

The point is not to chase modern buzzwords. It is to ensure that the portfolio can reallocate resources without being trapped by monoliths, fragile release processes, and dependency lock-in. A portfolio that cannot shift capacity rapidly is not a portfolio. It is a collection of sunk costs.

Make learning travel across businesses

Industrial enterprises often behave like federations of disconnected companies. Portfolio management creates economic logic across them—but learning still tends to stay local.

The playbook demands explicit learning transfer: practices proven in one category must cascade to others. This can be:

  • agile practices from a software unit into hardware-adjacent teams

  • predictive maintenance capabilities moving from one business line to another

  • repeatable sales plays scaling across regions

Cross-business learning is one of the few genuine scale advantages industrial groups can have. It rarely happens organically.

What to measure: portfolio health KPIs


Without the right metrics, portfolio management devolves into narrative competition. The playbook therefore defines portfolio health through a small, decision-oriented KPI set :
  • Strategic alignment: % of spend linked to top priorities

  • Balance: allocation across protect / fuel / manage / incubate

  • Capital efficiency: return on invested capital by category

  • Speed and agility: cycle time for reallocating resources

  • Innovation vitality: % of revenue from products <3 years old

  • Transparency: quality of reporting and visibility across units

These KPIs have a single purpose: enabling executives to act. They are not dashboards for dashboards’ sake. They support reallocation, exit decisions, and focus.

The industrial reality: multi-BU software fragmentation is normal

In most multi-BU industrial technology companies, software is already present everywhere—and rarely coherent. The majority of software activity and acquisitions often sit within a single BU, sales is executed regionally with overlays, and only a subset of companies attempt cross-BU platforms .

This is not a failure of intent. It is a predictable outcome of vertical accountability. Portfolio governance is the mechanism that turns this fragmentation into manageable structure.

Some companies have taken clearer strategic steps, for example by committing to standalone software businesses (such as Schneider Electric with AVEVA) or establishing dedicated digital units (as in GE Vernova’s digital BU heritage) . The common thread is not the brand name; it is the willingness to assign real operating autonomy and P&L logic to software.

A final question leaders cannot avoid


Portfolio playbooks are ultimately designed to force one unavoidable leadership choice:

Should software amplify the core business—or become a core business?

There is no universal answer. But there is a universal cost to avoidance. Companies that do not decide remain trapped in a hybrid model where software carries the expectations of growth but inherits the constraints of hardware governance.

In an era where AI is accelerating competitive cycles and compressing differentiation, this becomes existential. The next phase of industrial software will not be defined by platforms, clouds, or algorithms. It will be defined by governance: decision rights, capital allocation, accountability, and operating autonomy.

Software does not scale because it is strategically important.

It scales when it is structurally enabled to win.

Industrie 4.0 ist nicht an der Technologie gescheitert, sondern am Organisationrahmen

Seitdem es den Begriff Industrie 4.0 gibt verkünden Industriekonzerne ihre Absicht zu Softwareunternehmen zu werden. Digitalstrategien werden mit großer Überzeugung angekündigt, Milliarden investiert, Plattformen versprochen. Trotzdem sind die Fortschritte weitestgehend ausgeblieben. Viele Initiativen sind ins Stocken geraten, sind aufgesplittert worden oder stillschweigend umbenannt. Die üblichen ErklÀrungen machen die Technologie zum Schuldigen: nicht ausgereifte Plattformen, Legacy-IT, Kunden, die digitale Nachzügler sind, oder Künstliche Intelligenz, die den Erwartungen bislang nicht gerecht wird.

Diese ErklΓ€rungen sind bequem — und weitgehend falsch.



Das Problem war nie Software. Es war die fehlende Transformation der internen Ordnungsrahmen.

Die erste Phase der industriellen Digitalisierung basierte auf der Idee der horizontalen Industrie 4.0 Plattformen. Die Vision war ΓΌberzeugend: eine universelle Schicht, die Maschinen, Daten, Anwendungen und Kunden unternehmensweit verbindet. Bestehende Industriegiganten versuchten, die Skaleneffekte klassischer Enterprise-Software in die Industrie zu ΓΌbertragen. Was sie unterschΓ€tzten, war die strukturelle RealitΓ€t industrieller Organisationen: autonome GeschΓ€ftseinheiten mit eigenen Architekturen, Anreizsystemen, Preislogiken und Kundenbeziehungen. Integration war teuer, Adoption freiwillig, WertschΓΆpfung diffus. Plattformteams optimierten fΓΌr architektonische Eleganz — wΓ€hrend Budgets und Verantwortlichkeiten strikt vertikal verankert blieben.

Als der wirtschaftliche und operative Druck stieg, ließ sich dieser Zielkonflikt nicht lΓ€nger ignorieren. Die GeschΓ€ftseinheiten kehrten zu dem zurΓΌck, was sie kontrollierten — und wofΓΌr Kunden tatsΓ€chlich zu zahlen bereit waren. Priorisiert wurden LΓΆsungen, die an konkrete Workflows, Assets und Ergebnisse gekoppelt waren. Die universelle Plattform verschwand nicht, aber sie wurde neu zugeschnitten. In vielen FΓ€llen wurde sie zum Integrations-Backbone oder zu einem architektonischen Rahmenwerk — notwendige Infrastruktur, aber nicht mehr der Wachstumsmotor, zu dem sie ursprΓΌnglich auserkoren war.

Die WertschΓΆpfung verlagerte sich nach oben, nΓ€her an die geschΓ€ftliche Verantwortung. Vertikale Software — Manufacturing Execution, Asset Performance Management, Simulation, Digital Twins und Optimierung — zog zunehmend echte Budgets und Aufmerksamkeit des Managements auf sich. Nicht weil sie technologisch ausgefeilter war, sondern weil sie dazu passte, wie industrielle Kunden kaufen, steuern und Wert messen. Die Industrie 4.0 Plattformvision ist an organisatorischen RealitΓ€ten gescheitert, fΓΌr die sie nie ausgelegt war.

Die Industriekonzerne, die am weitesten kamen, erkannten das frΓΌh — und reagierten nicht mit besserer Technologie, sondern mit einer neuen Struktur. Statt Software innerhalb hardwaredominierter Organisationen „reifen“ zu lassen, trennten sie die Steuerung, ohne die DomΓ€nentiefe zu verlieren. Software-Assets wurden konsolidiert, erhielten eigenstΓ€ndige GeschΓ€ftsmodelle und konnten mit eigenen Budgetverantwortlichkeiten, Talentstrategien und Marktnarrativen skalieren. Erst als diese FΓ€higkeiten ausgereift waren, wurden sie wieder integriert — nicht als experimentelle AnhΓ€ngsel, sondern als laufende GeschΓ€fte. Diese Transformation war nicht zufΓ€llig. Sie war bewusst gestaltet.

Nirgends ist diese Governance-LΓΌcke deutlicher als im Vertrieb. Industriekonzerne sind seit Jahrzehnten darauf getrimmt, Hardware und Embedded Software in Capex-getriebenen, projektbasierten Modellen zu verkaufen — aufbauend auf technischer GlaubwΓΌrdigkeit und NΓ€he zum Engineering. Software as a Service  (SaaS) kehrt diese Logik um. Budgets wandern Richtung Opex, Vertriebszyklen werden kΓΌrzer, und Erfolg wird erst nach Vertragsabschluss ΓΌber Adoption, Retention und Expansion gemessen. Wert muss in GeschΓ€ftsergebnissen beschrieben werden, nicht in Spezifikationen. Der KΓ€ufer sitzt sich hΓ€ufig nicht mehr im Werk, sondern in der zentralen IT und Digitaler Transformation. SaaS einfach ΓΌber bestehende Vertriebsorganisationen zu legen, ohne Anreize, EigentΓΌmerschaft und Verantwortlichkeiten zu verΓ€ndern, erzeugt Reibung, die kein Produkt der Welt „wegoptimieren“ kann. Was wie ein Technologieproblem aussieht, ist fast immer ein kommerzielles.

Diese Spannungen kulminieren letztlich in einer organisatorischen Frage, der kein Industrievorstand ausweichen kann: Soll Software das KerngeschΓ€ft Hardware verstΓ€rken — oder soll sie selbst zum KerngeschΓ€ft werden? Manche Unternehmen betten Software eng in die Divisionen ein, bewahren KundennΓ€he, begrenzen jedoch Skalierung und Geschwindigkeit. Andere schaffen zentrale Software-Einheiten mit unabhΓ€ngiger Governance, gewinnen Fokus und Bewertungslogik, riskieren jedoch kulturelle Distanz. Keine dieser Entscheidungen ist per se richtig oder falsch. Doch die Entscheidung zu vermeiden, ist teuer.

Deshalb stehen Industriekonzerne trotz Γ€hnlicher Rhetorik an sehr unterschiedlichen Punkten ihrer Softwaretransformation. Der Unterschied liegt nicht in technologischer Raffinesse, sondern darin, wie viel echte Autonomie eine Softwareeinheit erhalten hat: Entscheidungskompetenz, Kapitalallokationsmacht und ein eigenes Go-to-Market-Modell. Wo diese Voraussetzungen existieren, skaliert Software. Wo sie fehlen, bleibt sie durch Hardware-Logik begrenzt — unabhΓ€ngig von Ambitionen.

Die aktuelle Begeisterung ΓΌber kΓΌnstliche Intelligenz droht denselben Fehler zu wiederholen. KI wird industrielle Digitalstrategien nicht retten, wenn Datenmodelle inkonsistent, EigentΓΌmerschaft unklar und Anreize nicht zielgerichtet sind. KI verstΓ€rkt, was bereits vorhanden ist und ohne einen neuen Ordnungsrahmen beschleunigt sie Fragmentierung, statt sie aufzulΓΆsen. 

Die nΓ€chste Phase industrieller Software wird daher nicht durch Plattformen, Clouds oder Algorithmen definiert werden. Sie wird durch Ordnungsrahmen und Steuerungsmechanismen definiert: Wer besitzt Softwarebudgets? Wer kontrolliert Roadmaps und Kapitalallokation? Wer trΓ€gt Verantwortung ΓΌber den initialen Verkauf hinaus? Unternehmen, die diese Fragen explizit beantworten, kΓΆnnen nachhaltige SoftwaregeschΓ€fte aufbauen. Unternehmen, die es nicht tun, werden weiterhin technologische Symptome diagnostizieren — und die organisatorischen Ursachen unangetastet lassen.


Die Zukunft industrieller Technologie wird nicht dadurch entschieden, wieviele Maschinen miteinander verbunden werden. Sie wird erst dann erreicht, wenn Firmen ihre Softwarestrategie mit organisatorischer Verantwortung verknΓΌpfen.

Industrial Software Didn’t Fail. Industrial Governance Did.


For more than a decade, industrial groups have proclaimed their ambition to become software companies. Billions were invested, platforms were launched, and digital strategies announced with great conviction. Yet progress has been uneven. Many initiatives stalled, fractured, or quietly rebranded. The usual explanations point to technology: immature platforms, legacy IT, customers that were not ready, or AI that has yet to deliver. These explanations are comforting — and largely wrong.

The problem was never software. It was governance.


The first phase of industrial digitization was built around the idea of horizontal IIoT platforms. The vision was compelling: one universal layer to connect machines, data, applications, and customers across the enterprise. Large incumbents sought to replicate the scale economics of enterprise software in an industrial setting. What they underestimated was how deeply industrial organisations are structured around autonomous business units, each with its own architectures, incentives, pricing logic, and customer relationships. Integration was costly, adoption voluntary, and value creation diffuse. Platform teams optimised for architectural elegance while budgets and accountability remained resolutely vertical.

As economic and operational pressure mounted, this tension became impossible to ignore. Business units gravitated back to what they controlled and what customers were willing to pay for. They prioritised solutions tied to specific workflows, assets, and outcomes. The universal platform did not disappear, but it was re-scoped. In many cases it became an integration backbone or architectural framework — necessary infrastructure, but no longer the growth engine it was once imagined to be.

Value creation moved upward, closer to business ownership. Vertical software — manufacturing execution, asset performance management, simulation, digital twins, and optimisation — began to attract real budgets and executive attention. Not because it was more sophisticated, but because it aligned with how industrial customers buy, govern, and measure value. The IIoT platform vision did not fail. It collided with organisational realities it was never designed to overcome.

The industrial groups that made the most progress recognised this early and responded not with better technology, but with better structure. Instead of forcing software to mature inside hardware-dominated organisations, they separated governance while preserving domain depth. Software assets were consolidated, given independent operating models, and allowed to scale with their own P&Ls, talent strategies, and market narratives. Only once these capabilities had matured were they reintegrated — not as experimental add-ons, but as credible businesses. The transformation was not organic. It was deliberate.

Nowhere is the governance gap more visible than in sales. Industrial companies excel at selling hardware and embedded software through capex-driven, project-based models built on engineering credibility. SaaS inverts this logic. Budgets shift to opex, sales cycles shorten, and success is measured after the contract is signed through adoption, retention, and expansion. Value must be articulated in business outcomes, not specifications. The economic buyer often moves from the plant to central IT or digital leadership. Overlaying SaaS onto legacy sales organizations without changing incentives, ownership, and accountability creates friction that no amount of product quality can resolve. What looks like a technology problem is almost always a commercial one.

These tensions ultimately surface as an organisational question that no industrial leader can avoid: should software amplify the core hardware business, or should it become a core business in its own right? Some companies embed software tightly within divisions, preserving proximity to customers but limiting scale and speed. Others establish corporate software units with independent governance, enabling focus and valuation clarity at the risk of cultural distance. Still others keep software fully embedded, optimising execution while constraining growth. None of these choices is inherently right or wrong. But avoiding the choice altogether is costly.

This is why industrial leaders, despite similar rhetoric, occupy very different positions on the software transformation journey. The differentiator is not technological sophistication, but the degree to which software has been granted real autonomy: decision rights, capital allocation authority, and a distinct go-to-market model. Where these conditions exist, software scales. Where they do not, it remains constrained by hardware logic, regardless of ambition.

The current enthusiasm around artificial intelligence risks repeating the same mistake. AI will not rescue industrial digital strategies that lack coherent data models, clear ownership, and aligned incentives. AI amplifies what already exists. Without governance, it accelerates fragmentation rather than resolving it. Industrial companies do not have an AI problem. They have a data and decision-rights problem.

The next phase of industrial software will therefore not be defined by platforms, clouds, or algorithms. It will be defined by governance. Who owns software P&Ls. Who controls roadmaps and capital allocation. Who carries accountability beyond the initial sale. Companies that address these questions explicitly will build durable software businesses. Those that do not will continue to diagnose technological symptoms while leaving organizational causes untouched.

The future of industrial technology will not be built by connecting more machines. It will be built by connecting software strategy to organizational power.


Two Companies, One Playbook: Turning Hardware Assets into Software Powerhouses

Over the past decade, Schneider Electric and Emerson, two of the world’s largest industrial technology firms, followed a remarkably similar path to build scaled software businesses — without starting from scratch.


The strategy: contribute assets, take a stake, then take control.


𝘚𝘡𝘦𝘱 1: 𝘚𝘡𝘳𝘒𝘡𝘦𝘨π˜ͺ𝘀 𝘈𝘴𝘴𝘦𝘡 𝘊𝘰𝘯𝘡𝘳π˜ͺ𝘣𝘢𝘡π˜ͺ𝘰𝘯

Each company began by contributing its industrial software divisions — visualization, control, and simulation — into a publicly traded software player.
This wasn’t a divestiture. It was a merger of convenience: the hardware group gained a foothold in software, while the target gained scale, capital, and customers.


𝘚𝘡𝘦𝘱 2: 𝘐𝘯𝘧𝘭𝘢𝘦𝘯𝘀𝘦 π˜›π˜©π˜³π˜°π˜Άπ˜¨π˜© π˜–π˜Έπ˜―π˜¦π˜³π˜΄π˜©π˜ͺ𝘱

With roughly 55–60% ownership, the parent company gained governance control while keeping the software entity separate enough to grow independently.
It gave investors a pure-play software narrative — and the industrial parent time to mature its internal software DNA.


𝘚𝘡𝘦𝘱 3: 𝘍𝘢𝘭𝘭 𝘐𝘯𝘡𝘦𝘨𝘳𝘒𝘡π˜ͺ𝘰𝘯

Once the software business had scaled, professionalized, and traded at a software multiple, the parent company moved to full ownership — bringing the software capability back into the group, now as a fully fledged SaaS business unit.



The Result:

πŸ‘‰ A controlled evolution from hardware-linked software to enterprise-scale SaaS — combining industrial domain expertise with software market agility.



The lesson:

In industrial tech, software transformation doesn’t have to be organic.

It can be architected — one equity transaction at a time.



This post was first published on LinkedIn in December 2025.